Search results for "Theoretical and experimental justification for the Schrödinger equation"
showing 3 items of 3 documents
The time-harmonic Maxwell equations
1996
In this chapter we shall see that the solution of the time-harmonic Maxwell equations with real coefficients can be transformed to time independent partial differential equations with complex coefficients. Then we introduce a finite element approximation proposed in [Křižek, Neittaanmaki, 1989]. A similar technique is analyzed in [Křižek, Neittaanmaki, 1984b], [Monk, 1992a] (for fully time dependent problems see, e.g., [Monk 1992b,c]).
Real lattices modelled by the nonlinear Schrödinger equation and its generalizations
2006
We present the analysis of two dimerized lattices : a bi-inductance electrical network with macroscopic wave modes, an antiferromagnetic chain whith microscopic spin waves. Using the multiple scale technique of reductive perturbation we show that the original discrete equations of motion can be reduced to a Nonlinear Schrodinger equation with complex coefficients for the first system and two coupled Nonlinear Schrodinger equations for the second system. The possible solutions of these equations are discussed in relation with our numerical simulations and real experiments.
Maxwell’s Equations
2012
The empirical basis of electrodynamics is defined by Faraday’s law of induction, by Gauss’ law, by the law of Biot and Savart and by the Lorentz force and the principle of universal conservation of electric charge. These laws can be tested – confirmed or falsified – in realistic experiments. The integral form of the laws deals with physical objects that are one-dimensional, two-dimensional, or three-dimensional, that is to say, objects such as linear wires, conducting loops, spatial charge distributions, etc. Thus, the integral form depends, to some extent, on the concrete experimental set-up. To unravel the relationships between seemingly different phenomena, one must switch from the integ…